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The dependence of the average diameter of the drops of an emulsion and their number in a unit volume on
the conditions of emulsion-fog generation has been investigated. An individual drop is heated, when it comes
into contact with a heated surface, to the boiling and evaporation temperatures. Under certain conditions, the
total time of heating and evaporation of all drops making contact with a surface for 1 sec can be smaller
than this time. In this case, active substances entering into the composition of the emulsion form a solid lu-
brication film on the surfaces of a piece, a chip, and a cutting tool. More than 50% of the total heat released
can be removed due to the boiling and evaporation of emulsion drops from the cutting zone.

The main requirement imposed on technological lubricating-cooling means (TLCM) is the provision of effec-
tive removal of heat from the cutting zone and formation of a lubricating film on the contact surfaces. One of the
most important problems arising in the process of using a TLCM is determination of its necessary amount [1]. For ex-
ample, in the case of boiling of water (representing a main component of an emulsion) there arise bubbles that form,
at a fairly large amount of water, a continuous vapor film on a heated surface. This film adjoins to the surface and
prevents the surface from being in contact with the aqueous medium. Even though the formation of a vapor film is
not a stable process, it eventually deteriorates the heat removal from the cutting zone [2]. A diffused TLCM interacts
with a heated surface much better than a liquid jet, which leads to the removal of a large amount of heat [3].

Considerable recent attention has been focused on cooling processes in which a minimum amount of the ac-
tive component of a TLCM is used. For example, in the case where aerosols are used for cooling, the flow rate of
this component is less than 50 ml/h [1, 4]. In this case, of great importance is the fact that the cutting tool, the piece,
and the chip formed remain dry. Under these conditions, it is impossible to estimate the consumption of the active
component of a TLCM with the naked eye. An increase in this consumption leads, on the one hand, to the formation
of a chip that could not be considered as dry, which makes its salvaging much more difficult, and on the other leads
to the formation of a film of liquid drops and chip fragments on the surface of a tool [1].

A cutting with the use of a minimum amount of a TLCM can be realized when the active component of
aerosols is an emulsion based on water, used for heat removal, or an oil because these substances possess good lubri-
cating properties, decreasing the friction forces in the cutting zone. A compressed air, when used as a transport means
for the active component of a TLCM, can serve to remove the chip from the working zone [1].

In the case, where aerosols are used, the output nozzle of an apparatus can be located in the immediate vi-
cinity of the cutting zone [5] or at any distance from it [6]. In this case, of importance are the diameter of the emul-
sion drops found in an aerosol and the flow rate of the emulsion.

Investigations were carried out with the use of an apparatus having two nozzles, one of which was used for
control of the flow rate of a compressed air and the other for control of the active substance (emulsion). In the proc-
ess of calibration of the apparatus, we measured the diameter of the drops on a plane surface simulating the active
surface of a cutting zone with allowance for the fact that the shape of a liquid drop is changed when it comes into
contact with a solid surface (it flattens in this case). The diameter of a drop on a surface is related to the diameter of
this drop in the air by the following relation [7]:
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D = md . (1)

It may be assumed that the coefficient m is equal to 2.5 [8].
As the active component of an emulsion fog, a 4%-concentration OPORTET RG-2 emulsion was used. An

emulsion fog was generated under the following conditions: distance between the output nozzle and the surface, 0.3–
0.4 m; emulsion flow rate, 1.5–3.5 g/min; compressed-air flow rate, 4.7–6.9 m3/h. As a result of the calibration of the
apparatus, we obtained regression dependences that allowed us to calculate the number of emulsion drops per 1 mm2

of the contact surface and their average diameter:
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0.58

E
0.19

P
1.772

 , (2)

d = 35.9⋅10
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The influence of the conditions of emulsion-fog generation on the indicated quantities is demonstrated in Fig. 1. The
drop-diameter distribution correlates fairly well with the normal-distribution law (Fig. 2).

The heat supplied to liquid drops initially heats them to the saturation temperature Qsat and then causes them
to evaporate. The heat-balance equation for the first stage of the process has the form [7]

πD
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 α (Θsat − Θ0) τ1 = c 

πd
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6
 (Θsat − Θ0) . (4)

The time of heating of a drop to the saturation temperature is equal to

Fig. 1. Dependence of the number of drops (a) and their diameter (b) on the
flow rates of a compressed air and an emulsion when the nozzle is located at a
distance of 0.4 m from the surface: E = 2 (1), 3 (2), and 4 g/min (3). D, µm.

Fig. 2. Histograms of the diameter distribution of emulsion drops in an emulsion
fog: a) L = 0.4 m, E = 2.6 g/min, and P = 4.7 m3/h; (b) 0.3, 3.6, and 4.7.
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For the boiling of a drop, we write the following heat-balance equation [7]:

πD
2

4
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6
 ρr , (6)

whence it follows that

τ2 = 
2ρrd

3αm
2
 (Θs − Θsat)

 . (7)

The total time necessary for evaporation of one drop is equal to

τ = τ1 + τ2 . (8)

Knowing the number and diameters of the drops falling on a heated surface in 1 sec, one can determine the
time of their evaporation. The calculation data obtained for E = 2.6 g/min, P = 4.7–6.9 m3/h, and a cooled surface of
area 20 mm2 are presented in Fig. 3. It is clear that there exist conditions under which the whole active component
falling on the heated surface evaporates. Under these conditions, a stable lubricating film is formed on a contact sur-
face, which decreases the friction on the contact areas and positively influences the shape of the chip. It may be sug-
gested that, in this case, the emulsion transports the active substances to the cutting zone.

Let us consider the heat transfer under certain tuning conditions. The amount of heat released in a cutting
zone in 1 sec is equal to

Q = PzV . (9)

The main component of the breaking force can be determined as [6]

Pz = tSkc0.4 


0.4
S sin ϕ





0.29

 . (10)

In the case where the rate of cutting is equal to 200 m/min, the rate of advance of a cutting tool is 0.2
mm/rot, the depth of cutting is 1 mm, the specific breaking force is kc0.4 = 2000 MPa [6], and the side rake angle is
70o, the main component of the breaking force will be equal to 560 N and the amount of heat released in the process
of cutting will comprise C530 W. The calculations were carried out with allowance for the fact that the actual side

Fig. 3. Influence of the diameter of the emulsion drops on the time of evapo-
ration of all drops falling on the heated surface for 1 sec. d, µm.

608



rake angle is equal to 48o at the above-indicated values of t, S, and ϕ when a cutting tool with a nose-radius of 0.8
mm is used.

The amount of heat removed from the cutting zone by one emulsion drop as a result of its heating and sub-
sequent evaporation is equal to

Q = Q1 + Q2 , (11)
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 C 0.005 W , (12)

Q2 = drρ 
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2

6
 C 0.178 W . (13)

Calculations have shown that the volume concentration of emulsion drops in the emulsion fog is equal to (2–3)⋅10−8.
The net result is that Q = 0.183 W.

It was established that, in the case where the cutting depth t = 1 mm and the velocity of the chip moving
along the face surface Vc = 80 m/min, the area of the active chip surface removed from a workpiece in 1 sec is ap-
proximately equal to 1300 mm2. If the heat removed from 1 mm2 of an emulsion drop in 1 sec measures 0.183 W,
230 W can be removed from the whole surface of the chip. Since the heated surfaces of a cutting tool and a work-
piece also participate in the heat transfer, more than 50% of the total amount of heat released can be removed by the
emulsion fog.

Thus, depending on the conditions of formation of an emulsion fog, the number and diameters of drops en-
tering the working zone can be different. Under certain cutting conditions, all drops making contact with a heating sur-
face for 1 sec can evaporate from this surface. In this case, all active substances present in the emulsion will be left
on the surfaces of the piece, the chip formed, and the cutting blade, and then on their contact surfaces. As a result,
on the contact surfaces there arises a lubricating film, decreasing the friction coefficient in the cutting zone and the
roughness of the surface worked. The emulsion fog removes a large amount of heat from the cutting zone — more
than 50% of the total heat released in certain cases.

NOTATION

c, heat capacity per unit volume of an emulsion, J/(m3⋅K); D, diameter of the spot of contact of a drop with
a surface, m; d, diameter of a drop in the air, m; E, flow rate of the emulsion, g/min; K, volume concentration of
emulsion drops in the emulsion fog; kc0.4, specific breaking force at a cut diameter of 0.4 mm, MPa; L, distance of a
nozzle from the surface, m; m, coefficient accounting for the deformation of a drop on the surface; N, number of
emulsion drops per 1 mm2 of the contact surface, drops/mm2; N1, number of definite-diameter emulsion drops falling
onto 1 mm2 of the surface, drops/ mm2; P, flow rate of a compressed air, m3/h; Pz, main component of the breaking
force, N; Q, amount of heat, J; r, heat of emulsion-vapor formation, J/kg; t, depth of cutting, mm; S, advance, mm/rot;
V, rate of chip cutting, m/sec; α, coefficient of convective heat transfer, W/(m2⋅oC); ϕ, side rake angle, deg; Θ, tem-
perature, oC; ρ, density of an emulsion, kg/m3; τ, time, sec. Subscripts: sat, saturation; s, surface; c, chip; 0, output of
a nozzle; 1, heating; 2, evaporation.
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